Product Description
Key attributes
Other attributes
Applicable Industries
Manufacturing Plant, Machinery Repair Shops, Energy & Mining
Â
Weight (KG)
1650
Â
Showroom Location
None
Â
Video outgoing-inspection
Provided
Â
Machinery Test Report
Provided
Â
Marketing Type
Hot Product 2571
Â
Warranty of core components
1 Year
Â
Core Components
Gear
Â
Place of CHINAMFG
ZheJiang , China
Â
Condition
New
Â
Warranty
1.5 years
Â
Shape
Ring Gear
Â
Standard or Nonstandard
Nonstandard
Â
Tooth Profile
Spur
Â
Material
Steel
Â
Processing
Casting
Â
Pressure Angle
20°
Â
Brand Name
HangZhou
Â
Product Name
custom large diameter alloy steel spur casting large ring gear
Â
Application
Cement kiln
Â
Gear Machining
Gear milling
Â
Module of Gear:
8-120
Â
OD For Gear Wheel:
MAX.13 000 mm
Â
Height For CHINAMFG
MAX. 1200 mm
Â
Certificate
ISO 9001:2015
Â
Tolerance
+/-0.01mm
Â
Heat treatment
QT
Â
Surface Treatment
Surface Hardening or Carburizing and Quenching
Â
Packaging and delivery
Packaging Details
Package for Cement kiln custom large diameter ring gear transmission alloy steel spur casting large ring gear is wooden box and adapts to CHINAMFG transport
Â
Port
ZheJiang ,HangZhou or Others
Â
Supply Ability
Supply Ability
9000 Ton/Tons per Year
Â
OUR WORKSHOPS
Â
OUR EQUIPMENTS
Technology Process
Material |
Carbon steel,Alloy steel |
||
Structure |
Forging,casting |
||
Type of gear |
spur gear,helical gear,Planetary Gear |
||
Heat treatment |
Quenching and tempering |
||
Process |
forging, rough machining, QT, finish machining |
||
Main equipments |
hobbing,CNC machine |
||
Module |
up to 200 |
||
Precision of gear |
Grinding ISO Grade 5-7 & Hobbing ISO Grade 8-9 |
||
Inspection |
Raw material inspection, UT,physical property test,dimension inspect |
||
Application |
Mining machinery, mill, kiln and other equipment |
OUR CERTIFICATE
OUR CUSTOMER FEEDBACK
CONTACTÂ
 /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industry |
---|---|
Hardness: | Hb190-Hb300 |
Gear Position: | External Gear |
Samples: |
US$ 100/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How does a worm gear impact the overall efficiency of a system?
A worm gear has a significant impact on the overall efficiency of a system due to its unique design and mechanical characteristics. Here’s a detailed explanation of how a worm gear affects system efficiency:
A worm gear consists of a worm (a screw-like gear) and a worm wheel (a cylindrical gear with teeth). When the worm rotates, it engages with the teeth of the worm wheel, causing the wheel to rotate. The main factors influencing the efficiency of a worm gear system are:
- Gear Reduction Ratio: Worm gears are known for their high gear reduction ratios, which are the ratio of the number of teeth on the worm wheel to the number of threads on the worm. This high reduction ratio allows for significant speed reduction and torque multiplication. However, the larger the reduction ratio, the more frictional losses occur, resulting in lower efficiency.
- Mechanical Efficiency: The mechanical efficiency of a worm gear system refers to the ratio of the output power to the input power, accounting for losses due to friction and inefficiencies in power transmission. Worm gears typically have lower mechanical efficiency compared to other gear types, primarily due to the sliding action between the worm and the worm wheel teeth. This sliding contact generates higher frictional losses, resulting in reduced efficiency.
- Self-Locking: One advantageous characteristic of worm gears is their self-locking property. Due to the angle of the worm thread, the worm gear system can prevent the reverse rotation of the output shaft without the need for additional braking mechanisms. While self-locking is beneficial for maintaining position and preventing backdriving, it also increases the frictional losses and reduces the efficiency when the gear system needs to be driven in the opposite direction.
- Lubrication: Proper lubrication is crucial for minimizing friction and maintaining efficient operation of a worm gear system. Inadequate or improper lubrication can lead to increased friction and wear, resulting in lower efficiency. Regular lubrication maintenance, including monitoring viscosity, cleanliness, and lubricant condition, is essential for optimizing efficiency and reducing power losses.
- Design and Manufacturing Quality: The design and manufacturing quality of the worm gear components play a significant role in determining the system’s efficiency. Precise machining, accurate tooth profiles, proper gear meshing, and appropriate surface finishes contribute to reducing friction and enhancing efficiency. High-quality materials with suitable hardness and smoothness also impact the overall efficiency of the system.
- Operating Conditions: The operating conditions, such as the load applied, rotational speed, and temperature, can affect the efficiency of a worm gear system. Higher loads, faster speeds, and extreme temperatures can increase frictional losses and reduce overall efficiency. Proper selection of the worm gear system based on the expected operating conditions is critical for optimizing efficiency.
It’s important to note that while worm gears may have lower mechanical efficiency compared to some other gear types, they offer unique advantages such as high gear reduction ratios, compact design, and self-locking capabilities. The suitability of a worm gear system depends on the specific application requirements and the trade-offs between efficiency, torque transmission, and other factors.
When designing or selecting a worm gear system, it is essential to consider the desired balance between efficiency, torque requirements, positional stability, and other performance factors to ensure optimal overall system efficiency.
Can worm gears be used in automotive applications?
Yes, worm gears can be used in certain automotive applications. Here’s a detailed explanation of their use in the automotive industry:
1. Steering Systems: Worm gears are commonly used in automotive steering systems, particularly in older vehicles. They can provide the necessary torque and precision for steering control. The self-locking feature of worm gears is advantageous in steering applications as it helps maintain the desired steering position even when external forces are applied. However, it’s important to note that many modern vehicles have transitioned to other steering mechanisms such as rack and pinion for improved efficiency and performance.
2. Window Regulators: Worm gears can be found in power window regulator systems in some vehicles. They help convert rotational motion into linear motion, allowing for the smooth and controlled movement of windows. Worm gears in window regulators are often paired with a mechanical linkage system to distribute the motion to multiple windows.
3. Convertible Top Mechanisms: In convertible vehicles, worm gears can be utilized in the mechanisms that raise and lower the convertible top. The high torque capabilities of worm gears make them suitable for these applications, as they can effectively handle the load of the top and ensure smooth and reliable operation.
4. Accessory Drives: Worm gears can be employed in accessory drives within the automotive engine compartment. They can be used to transfer power from the engine to various accessories such as water pumps, fuel pumps, and air compressors. However, it’s important to note that other power transmission mechanisms such as belts and pulleys or gear drives are more commonly used in modern automotive accessory drive systems due to their higher efficiency and compact design.
5. Limited-Slip Differentials: Worm gears can be incorporated into limited-slip differentials in some automotive applications. Limited-slip differentials distribute torque between the wheels to improve traction and stability. Worm gears can provide the necessary torque multiplication and torque biasing capabilities required for limited-slip differentials.
While worm gears can be found in these automotive applications, it’s important to consider that other power transmission mechanisms such as spur gears, bevel gears, and belt drives are more commonly used in modern automotive designs. These alternatives often offer higher efficiency, compactness, and better performance characteristics for automotive applications. Additionally, advancements in technology and the pursuit of lightweight and efficient designs have led to the adoption of alternative power transmission systems in many automotive applications.
Overall, while worm gears have a place in certain automotive applications, their use is more limited compared to other power transmission mechanisms commonly employed in the automotive industry.
What are the benefits of using a worm gear mechanism?
Using a worm gear mechanism offers several benefits in various applications. Here are some of the advantages:
- High Gear Reduction: Worm gears provide high gear reduction ratios, allowing for significant speed reduction and torque multiplication. This makes them suitable for applications where a small input speed or high torque output is required.
- Compact Design: Worm gears have a compact design, with the worm and worm wheel positioned at right angles to each other. This makes them space-efficient and suitable for applications where size and weight limitations exist.
- Self-Locking: Worm gears exhibit a self-locking characteristic due to the angle of the worm’s helical thread. This means that the worm can drive the worm wheel, but the reverse is not true. The self-locking feature allows worm gears to hold position without additional braking mechanisms, making them suitable for applications that require mechanical holding or braking capabilities.
- Quiet Operation: Worm gear mechanisms are known for their quiet operation. The helical nature of the worm’s thread and the meshing with the worm wheel teeth help reduce noise and vibration, resulting in smoother and quieter performance.
- Shock Load Resistance: Worm gears are capable of handling moderate to high shock loads due to their inherent design. The sliding action between the worm and worm wheel allows the gear system to absorb and distribute sudden impacts and loads effectively.
- Versatile Mounting Options: Worm gears can be mounted in various orientations, including horizontal, vertical, and inclined positions, providing flexibility in design and installation.
- High Torque Transmission: The design of worm gears allows for efficient transmission of high torque. This makes them suitable for applications that require heavy-duty torque requirements, such as lifting mechanisms, conveyor systems, and machine tools.
- Simple Lubrication: Worm gears typically require lubrication to reduce friction and wear. However, compared to some other gear types, worm gears have relatively simple lubrication requirements due to the sliding action between the worm and worm wheel. Proper lubrication helps extend the lifespan of the gear system and maintain its performance.
These benefits make worm gear mechanisms well-suited for a wide range of applications, including automotive systems, industrial machinery, elevators, robotics, and more. However, it’s important to consider the specific requirements and limitations of each application to ensure the optimal use of worm gears.
editor by CX 2024-03-27