Product Description
Factory Manufacturer Custom SUS303 304 Aluminum Brass Worm Wheel Gear
The working principle of gear rack is to convert the rotary motion of gear into the reciprocating linear motion of rack, or convert the reciprocating linear motion of rack into the rotary motion of gear. The rack and pinion mechanism is composed of gears and racks. We have explained the gears in detail. The rack is divided into spur gear rack and helical gear rack. The tooth profile of the rack is a straight line rather than an involute (for the tooth surface, it is a plane), which is equivalent to an infinite cylindrical gear with an inHangZhou circle radius.
Product Description
Product name | Worm Gear and Worm Wheel |
Materials Available | Stainless Steel, Carbon Steel, Brass,  Bronze, Iron, Aluminum Alloy,Copper,Plastic etc |
Heat Treatment | Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding…… |
Surface Treatment | Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering |
BORE | Finished bore, Pilot Bore, Special request |
Processing Method | Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc |
Pressure Angle | 20 Degree |
Hardness | 55- 60HRC |
Size | Customer Drawings & ISO standard |
Package | Wooden Case/Container and pallet, or made-to-order |
Certificate | ISO9001:2008 |
Applications | Electric machinery, metallurgical machinery, environmental protection machinery, electronic and electrical appliances, road construction machinery, chemical machinery, food machinery, light industrial machinery, mining machinery, transportation machinery, construction machinery, building materials machinery, cement machinery, rubber machinery, water conservancy machinery and petroleum machinery |
Machining Process | Material preparation, normalizing, rough turning, quenching and tempering, semi fine turning outer circle, rough turning spiral surface, fine turning (fine grinding) inner hole end face, keyway, semi fine turning spiral surface, pliers (rest incomplete teeth), semi fine grinding outer circle, semi fine grinding spiral surface, grinding center hole, fine grinding outer circle, fine grinding spiral surface, finished product inspection |
Advantages | 1. Produce strictly in accordance with ANSI or DIN standard dimension 2. Material: SCM 415 steel 3. Bore: Finished bore 4. Precision grade: DIN 5 to DIN 7 5. Surface treatment: Carburizing and Quenching 6. Module: From 1 to 4 7. Tooth: From Z15 to Z70 |
Specifction:
Number | Number of Teeth | Shaft Bore Dia. AH7Â (1mm Increment) | Twisting Direction | B | C | D | E | F | G | ||
Type | Module | Straight Bore Straight Bore+Tap | Keyway+Tap | ||||||||
Straight Bore
Straight Bore+Tap Keyway+Tap |
1.0 | 20 | 6 | 8 | L(Left)
R(Right) |
17 | 20 | 22 | 8 | 10 | 18 |
22~ 28 | 8 | 8~13 | 18~20 | 22~28 | 24~30 | ||||||
30~48 | 10 | 10~17 | 25~30 | 30~48 | 32~50 | ||||||
50~70 | 12 | 12~17 | 35~40 | 50~70 | 52~72 | ||||||
80~100 | 15 | 15~30 | 50 | 80~100 | 82~102 | ||||||
1.5 | 20~26 | 12 | 12~17 | 24~32 | 30~39 | 33~42 | 12 | 12 | 24 | ||
28~44 | 15 | 15~30 | 36~50 | 42~67.5 | 45~70.5 | ||||||
45~52 | 18 | 18~40 | 50~60 | 72~78 | 75~81 | ||||||
60~100 | 20 | 20-50 | 60~70 | 90~150 | 93·153 | ||||||
2.0 | 15~18 | 12 | 12~17 | 24~30 | 30~36 | 34~40 | 16 | 13 | 29 | ||
20~28 | 15 | 15·22 | 32~45 | 40~56 | 44~60 | ||||||
30~36 | 18 | 18~40 | 50 | 60~72 | 64~76 | ||||||
40~48 | 20 | 20~44 | 60 | 80~96 | 84~100 | ||||||
50~100 | 25 | 25~60 | 60~100 | 100~200 | 104~204 | ||||||
2.5 | 15~18 | 15 | 15~30 | 30~38 | 37.5~45 | 42.5~50 | 20 | 14 | 34 | ||
20~24 | 18 | 18~40 | 40~48 | 50~60 | 55~65 | ||||||
25~36 | 20 | 20~50 | 50~70 | 62.5~90 | 67.5~95 | ||||||
40~60 | 25 | 25~70 | 70~80 | 90~150 | 95~155 | ||||||
3.0 | 15~18 | 18 | 18~22 | 36~40 | 45~54 | 51~60 | 25 | 16 | 4 |
Company Profile
Packaging & Shipping
FAQ
Main Markets? | North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia |
How to order? | * You send us drawing or sample |
* We carry through project assessment | |
* We give you our design for your confirmation | |
* We make the sample and send it to you after you confirmed our design | |
* You confirm the sample then place an order and pay us 30% deposit | |
* We start producing | |
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers. | |
* Trade is done, thank you!! |
Â
If you are interested in our products, please tell us which materials, type, width, length u want.
Application: | Motorcycle, Machinery, Agricultural Machinery, Automation Equipment |
---|---|
Hardness: | 55-60 HRC, Hardened Tooth Surface |
Gear Position: | External Gear |
Manufacturing Method: | Rolling Gear |
Toothed Portion Shape: | Spur Gear |
Material: | S45c |
Samples: |
US$ 15/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How does a worm gear impact the overall efficiency of a system?
A worm gear has a significant impact on the overall efficiency of a system due to its unique design and mechanical characteristics. Here’s a detailed explanation of how a worm gear affects system efficiency:
A worm gear consists of a worm (a screw-like gear) and a worm wheel (a cylindrical gear with teeth). When the worm rotates, it engages with the teeth of the worm wheel, causing the wheel to rotate. The main factors influencing the efficiency of a worm gear system are:
- Gear Reduction Ratio: Worm gears are known for their high gear reduction ratios, which are the ratio of the number of teeth on the worm wheel to the number of threads on the worm. This high reduction ratio allows for significant speed reduction and torque multiplication. However, the larger the reduction ratio, the more frictional losses occur, resulting in lower efficiency.
- Mechanical Efficiency: The mechanical efficiency of a worm gear system refers to the ratio of the output power to the input power, accounting for losses due to friction and inefficiencies in power transmission. Worm gears typically have lower mechanical efficiency compared to other gear types, primarily due to the sliding action between the worm and the worm wheel teeth. This sliding contact generates higher frictional losses, resulting in reduced efficiency.
- Self-Locking: One advantageous characteristic of worm gears is their self-locking property. Due to the angle of the worm thread, the worm gear system can prevent the reverse rotation of the output shaft without the need for additional braking mechanisms. While self-locking is beneficial for maintaining position and preventing backdriving, it also increases the frictional losses and reduces the efficiency when the gear system needs to be driven in the opposite direction.
- Lubrication: Proper lubrication is crucial for minimizing friction and maintaining efficient operation of a worm gear system. Inadequate or improper lubrication can lead to increased friction and wear, resulting in lower efficiency. Regular lubrication maintenance, including monitoring viscosity, cleanliness, and lubricant condition, is essential for optimizing efficiency and reducing power losses.
- Design and Manufacturing Quality: The design and manufacturing quality of the worm gear components play a significant role in determining the system’s efficiency. Precise machining, accurate tooth profiles, proper gear meshing, and appropriate surface finishes contribute to reducing friction and enhancing efficiency. High-quality materials with suitable hardness and smoothness also impact the overall efficiency of the system.
- Operating Conditions: The operating conditions, such as the load applied, rotational speed, and temperature, can affect the efficiency of a worm gear system. Higher loads, faster speeds, and extreme temperatures can increase frictional losses and reduce overall efficiency. Proper selection of the worm gear system based on the expected operating conditions is critical for optimizing efficiency.
It’s important to note that while worm gears may have lower mechanical efficiency compared to some other gear types, they offer unique advantages such as high gear reduction ratios, compact design, and self-locking capabilities. The suitability of a worm gear system depends on the specific application requirements and the trade-offs between efficiency, torque transmission, and other factors.
When designing or selecting a worm gear system, it is essential to consider the desired balance between efficiency, torque requirements, positional stability, and other performance factors to ensure optimal overall system efficiency.
How do you address noise and vibration issues in a worm gear system?
Noise and vibration issues can arise in a worm gear system due to various factors such as misalignment, improper lubrication, gear wear, or resonance. Addressing these issues is important to ensure smooth and quiet operation of the system. Here’s a detailed explanation of how to address noise and vibration issues in a worm gear system:
1. Misalignment correction: Misalignment between the worm and the worm wheel can cause noise and vibration. Ensuring proper alignment of the gears by adjusting their positions and alignment tolerances can help reduce these issues. Precise alignment minimizes tooth contact errors and improves the meshing efficiency, resulting in reduced noise and vibration levels.
2. Lubrication optimization: Inadequate or improper lubrication can lead to increased friction and wear, resulting in noise and vibration. Using the correct lubricant with the appropriate viscosity and additives, and ensuring proper lubrication intervals, can help reduce friction and dampen vibrations. Regular lubricant analysis and replenishment can also prevent excessive wear and maintain optimal performance.
3. Gear inspection and replacement: Wear and damage to the gear teeth can contribute to noise and vibration problems. Regular inspection of the worm gear system allows for early detection of any worn or damaged teeth. Timely replacement of worn gears or damaged components helps maintain the integrity of the gear mesh and reduces noise and vibration levels.
4. Noise reduction measures: Various noise reduction measures can be implemented to minimize noise in a worm gear system. These include using noise-dampening materials or coatings, adding sound insulation or vibration-absorbing pads to the housing, and incorporating noise-reducing features in the gear design, such as profile modifications or helical teeth. These measures help attenuate noise and vibration transmission and improve overall system performance.
5. Resonance mitigation: Resonance, which occurs when the natural frequency of the system matches the excitation frequency, can amplify noise and vibration. To mitigate resonance, design modifications such as changing gear stiffness, altering the system’s natural frequencies, or adding damping elements can be considered. Analytical tools like finite element analysis (FEA) can help identify resonant frequencies and guide the design changes to reduce vibration and noise.
6. Isolation and damping: Isolation and damping techniques can be employed to minimize noise and vibration transmission to the surrounding structures. This can involve using resilient mounts or isolators to separate the gear system from the rest of the equipment or incorporating damping materials or devices within the gear housing to absorb vibrations and reduce noise propagation.
7. Tightening and securing: Loose or improperly tightened components can generate noise and vibration. Ensuring that all fasteners, bearings, and other components are properly tightened and secured eliminates sources of vibration and reduces noise. Regular inspections and maintenance should include checking for loose or worn-out parts and addressing them promptly.
Addressing noise and vibration issues in a worm gear system often requires a systematic approach that considers multiple factors. The specific measures employed may vary depending on the nature of the problem, the operating conditions, and the desired performance objectives. Collaborating with experts in gear design, vibration analysis, or noise control can be beneficial in identifying and implementing effective solutions.
How does a worm gear differ from other types of gears?
A worm gear differs from other types of gears in several ways. Here are the key differences:
- Gear Configuration: A worm gear consists of a threaded worm and a mating gear, known as the worm wheel or worm gear. The worm has a helical thread that meshes with the teeth of the worm wheel. In contrast, other types of gears, such as spur gears, bevel gears, and helical gears, have parallel or intersecting axes of rotation.
- Gear Ratio: Worm gears provide high gear reduction ratios compared to other types of gears. The ratio is determined by the number of teeth on the worm wheel and the number of threads on the worm. This high reduction ratio allows worm gears to transmit more torque while maintaining a compact size.
- Direction of Rotation: In a worm gear system, the worm can drive the worm wheel, but the reverse is not true. This is due to the self-locking nature of worm gears. The angle of the worm’s helical thread creates a wedging action that prevents the worm wheel from backdriving the worm. This characteristic makes worm gears suitable for applications requiring a mechanical brake or holding position.
- Efficiency: Worm gears typically have lower efficiency compared to other types of gears. This is primarily due to the sliding action between the worm’s threads and the worm wheel’s teeth, which leads to higher friction and energy losses. Therefore, worm gears are not ideal for applications that require high efficiency or continuous, high-speed operation.
- Lubrication: Worm gears require proper lubrication to reduce friction and wear. The sliding action between the worm and the worm wheel generates heat, which can affect the performance and lifespan of the gear system. Lubricants help to dissipate heat and provide a protective film between the mating surfaces, reducing friction and extending the gear’s life.
- Applications: Worm gears are commonly used in applications that require high gear reduction, compact size, and self-locking capabilities. They are found in various industries, including elevators, automotive steering systems, machine tools, robotics, and winding mechanisms.
Overall, the unique design and characteristics of worm gears make them suitable for specific applications where high torque, compactness, and self-locking features are essential, even though they may have lower efficiency compared to other types of gears.
editor by CX 2023-09-30